
 ١٦٠

CHAPTER NINE 

VISUAL BASIC IN EXCEL (VBA) 

 

What is VBA? 

. VBA stands for Visual Basic for Application. 

. VBA is the tool you use to develop macros (or programs) that 

control Excel in many different ways. 

An introduction to Visual Basic Programming in excel 

1. Choose View   Toolbars submenu   activate Forms 

and Visual Basic tool bars. 

2. In the Visual Basic tool bar the icon to the the LEFT of the 

“hammer and wrench” is the Visual Basic Editor. 

 



 ١٦١

3. Click on this to enter the Visual Basic Environment. 

4. Go to the Insert pull down menu 

5. Choose Module from the list of options 

  

6.  This will arrive at a multi part window: 

 

• On the left-hand side you will see two small windows. The top 

left window gives an overview of all the elements in the visual 

basic environment 

• The bottom left window gives the properties of what ever is 

highlighted in the top left window 

Make sure Module1 is highlighted in the Project-VBA Project 

sub-window. 

• Go to the (Name) field in the bottom window and change the 

name to something more appropriate i.e., TRAP 

 



 ١٦٢

 

 

Programming: 

STEP(1) 

The first and second lines of your visual basic program should be 

(1) The name of the program and (2) The End statement--- i.e. 

 

Sub Trap() 

End Sub 

 

The first line says that you are going to write a subroutine called 

“Trap”. The second line will be added automatically. 



 ١٦٣

 

STEP (2). RUNNING THE PROGRAM 

  Although it will not do anything we can run our program 

Method 1. Development Mode. 

• Choose Run   Run Sub/User Form 

 

 

• This is a good option when you are testing the program 

• IF YOU MAKE AN ERROR IN the LOGIC, THE PROGRAM 

will stop running and a dialog box will appear. 

. SELECTING the debug option in this box will point out the line 

that is wrong. You can then correct the line and reset the program. 

• DO this by going to the run and selecting the reset 

 

Method 2. Normal Mode. 

• Return to Excel (in the Visual Basic Editor) click on the X icon 

on the far left of the second menu bar. 

TIP It is a good idea to rename the sheet that you will use to 

communicate with the visual basic program. Data will be entered 



 ١٦٤

in the cells in that sheet and read by the visual basic program. In 

turn, after processing the program will return data assigned cells in 

the spreadsheet. 

To name control sheet 

• select the sheet tab 

• hit the right mouse button 

• choose the rename option 

• name the sheet. 

STEP (3) 

Next type some COMMENTS these are little memos to yourself. 

To type a comment at the start of the line place a single quote (‘). 

Sub Trap () 

' This program was written in 2007 

' Its purpose is to evaluate an integral using the trapezoidal rule 

End Sub 

 

STEP (4). Communicating between a sheet and a program 

• The key step in using visual basic in excel is the ability to pass 

information from a sheet to the program and visa versa. 

• We use an array called CELLS (Row, Column) 

• For example: on a sheet CELLS (5,11) refers to the cell with 

address D5. 



 ١٦٥

• If you look at a given sheet the value in cell D5 is located in the 

5th row and the 4th column. 

 

Example: 

1. Read a value from spread sheet “control” cell A1 

2. Store that value in the program under the label N 

3. Output the value of N back to the sheet “control” and place it 

in cell B10 

 

Sub Trap() 

' This program was written in 2007 

' Its purpose is to evaluate an integral using the trapezoidal rule 

' Read in number of steps from sheet "Control" 

N = Sheets("Control").Cells(1, 1) 

' The first element on the right hand side tells the program to look 

on the spreadsheet called "control" 



 ١٦٦

' The second element on the right hand side tells the program to 

look in cell A1  

' The program stores this value under the label N 

' Output number of steps back to Spread sheet control 

Sheets("Control").Cells(10, 2) = N 

' This makes the program put the current value stored under the 

'label N into the location B10 on the spreadsheet called control 

End Sub 

 

. This new code can be readily checked by clicking the “magic 

Button” on the control page. 

 

STEP (5) Variable types. 

Understanding variables 

. A variable is simply a named storage location in your computer 

memory. 

. Make the variable names as descriptive as possible 

. You as sign a value to a variable using the equal sign operator 

 

 Examples: 

X=1 

X= X +1 

Username = “Bob Johnson” 



 ١٦٧

General Rules: 

• You can use letters, numbers and some characters, but the first 

character must be a letter. 

• You cannot use any spaces or periods in a variable name. 

• VBA does not distinguish between uppercase and lowercase 

letters. 

• You cannot use the following characters: #, $, %, &, or ! 

 

What are variable types? 

. Variable type refers to the manner in which a program stores data 

in memory – for example, as integer, real numbers, or strings. 

. VBA has a variety of built-in data types. The following table lists 

the most common types of data that VBA can handle. 

. Although VBA can take care of these details automatically, it 

does so at a cost. 

. Letting VBA handle your data results in slower execution and 

inefficient use of memory especially with complex programs. 

 TIP when VBA is working with data, execution speed depends in 

the number of bytes VBA must handle. The fewer bytes used by 

the data, the faster VBA can access and manipulate data.  

 



 ١٦٨

 

 

Declaring variables 

If you don’t declare the data type for a variable, VBA assigns the 

default data type, variant. 

. Variant causes VBA to repeatedly perform time- consuming 

checks and reserve more memory than necessary. 

. If VBA knows a variable’s data type, it doesn’t have to 

investigate, and it can reserve just enough memory to store the 

data. 

 

To force yourself to declare all variables you use, include the 

following at the first statement in your VBA module: 

Option Explicit 



 ١٦٩

This statement causes the program to stop whenever VBA founds a 

new variable that has not been declared. This is very useful if you 

misspell a variable so VBA will declare it as a new variable. 

 

. In our Trap program we will need: 

 

Two integer variable: 

I (a counter) and N (the number of Strips); 

 

Floating point (real) variables for: 

. The“X” values 

. The function heights “Fleft” and “Fright” 

. The Area. 

. At the start of the program we write the lines: 

 

 



 ١٧٠

Step (6). Loop 

. Often in programming we need to Repeat operations many times. 

.One way to do this is with – FOR LOOP, 

F – Next loops 

 

.This loop sets I = -3: 

Carries out the equation N=N+1, so N=1 

. Increments I by 2 to the value –1: 

Repeats the equation, so N=2 now. 

. Increments I to the value 1: 

Repeats the equation, so N=3 now. 

 

GO TO NEXT LINE 

 

 



 ١٧١

Another way to do this is with – DO LOOP, 

Do- Loops 

Do- While and Do-Until loop 

Loop continues until a specified condition is met, e.g.,  

 

 

As long as I is less than 100, the loop will run. 

 

STEP (7) The If – Then structure 

. Often we may only want to follow some instructions under a 

given condition. Consider: 



 ١٧٢

 

 

Example:  

 

 

When the program runs, the figure below will appear asking for the 

time of the day; 



 ١٧٣

 

 

Once the time is entered and you click OK, the program will put 

the value of “13” in cell “A1”, the text “Good Afternoon” in cell 

“B1”, and then displays a message box as shown below. 

 

Note: 

. We used the operator < (less than) and > (bigger than) before. 

. Other operator that may be used in the if statements are: 



 ١٧٤

= (equal to) and <> (not equal to) 

Using ElseIf: 

. If the first condition in the if statement turns out to be false, you 

might want to explore other alternatives. 

. The ElseIf allows you to add as many alternatives as you like. 

 

 

 



 ١٧٥

VBA FUNCTIONS AND ARRAYS 

Subroutines versus Functions 

. The VBA code that you write in Visual Basic module is known as 

a procedure. 

. You can write two types of procedures: 

A subroutine procedure: A group of VBA statements that 

perform actions with Excel, i.e. like the one we used in trapezoidal 

rule. 

A function procedure: A group of VBA statements that perform a 

calculation and return a single value. 

 

Common Types of Functions in Excel 

 

Built-in Functions: 

. Excel includes many worksheet functions that we often use. 

. Examples include SUM, AVERAGE, MEAN, SIN, … etc. 

. Each function takes one or more arguments and returns a single 

value. 

 

VBA or User-defined Functions: 

. Similar to what a build-in function can do but can do more. 

. Simply, it is a piece of programming code that gives you a value 

back whenever you use it. 



 ١٧٦

Looking at Functions 

. Every function must start with the keyword Function and end 

with an End Function statement. 

 

Function Multiply (x , y) 

Statements 

Multiply = x * y 

End Function 

 

. This function, named “Multiply”, takes two arguments (named x 

and y). 

. Arguments are a list of variables representing values that are 

passed to the function. 

. Functions can have no argument, one argument, or multiple 

arguments. 

. Statements are various line of code, one of which will be of the 

form “Multiply = expression”, i.e. Multiply = x*y. 

. This is the same name as on the first line and the value of the 

expression is assigned to it. This is becomes the return value of the 

function 

. When you run the function, it returns a single value that is the 

value of ‘x’ multiplied by ‘y’. 

 



 ١٧٧

You can’t use the Excel macro recorder to record a function. You 

must manually enter every function that you create. 

 

Example: 

Create a function that determines the area of equilateral triangle 

with side length ‘L’ and base ‘B’. 

 

 

. When you run the function, it returns a value of the area and the 

following window will display the value of the area. 



 ١٧٨

 

 

Executing Functions 

. Functions can be executed in only two ways: 

By calling the function from another subroutine or function. 

By using the function directly in a worksheet formula. 

 

Method 1: Calling the function from a subroutine 

Because you can’t execute the function directly, you must call it 

from another subroutine as shown in the following figure 

 

I. When running the executer subroutine, two consecutive windows 

will appear asking about L then B. 

II. Once you gave the data needed, a message box will appear 

showing the resulting area as shown in the previous example. 



 ١٧٩

 

 

Method 2. Calling the function from a worksheet formula 

. Activate the worksheet in the same workbook that holds the 

“area” function. 

• Then, enter the following formula into any cell: 

= area (5,6) 

• The cell displays 12, which is the area of equilateral triangle of 

side length = 5 and base length = 6. 

• You can use a cell reference as the argument for the area function 

as we can see below; 
 



 ١٨٠

 

 

ARRAYS 

. An array is a group of variables that have a common name. 

. You refer to specific variable in the array by using the array name 

and an index number. 

Array example: 

. Assume that you want to store the months of the year in your 

subroutine. 

. You may define an array of 12 string variables to hold the months 

of the year. 

. If the array name is MonthNames, you can refer to the first 

element of the array (i.e. January) as MonthNames (1), the second 

element as MonthNames (2), and so on. 

 



 ١٨١

DeclaringArrays 

. You declare an array with a Dim statement, just like you declare 

regular variable. 

. However, you also need to specify the number of elements in the 

array. 

. You do this by specifying the first index number, the keyword to, 

and the last index number as shown in the following: 

 

Dim MyArray (1 to 100) as Integer 

 

. When you declare an array, you can specify only the upper index. 

. VBA assumes that 0 is the lower index. 

. Therefore, the following statements both declare the same array: 

 

Dim MyArray (0 to 100) as Integer 

Dim MyArray (100) as Integer 

 

Note: 

. If you want VBA to assume that 1 is the lower index for the 

arrays include the following statement before any sub or Function 

in your module 

Option Base 1 

. This statement forces VBA to use 1 as the first index number. 



 ١٨٢

. If this statement is present, the following statements are identical: 

 

Dim MyArray (1 to 100) as Integer 

Dim MyArray (100) as Integer 

 

Declaring Multi-dimensional Arrays 

. The arrays created above are all one-dimensional arrays. 

. Arrays you create in VBA can have as many as 60 dimensions. 

. The following example declares a 100-integer array with two 

dimensions: 

 

Dim MyArray (1 to 10, 1 to 10) as Integer 

 

. You can think of this array as a 10 by 10 matrix. 

. To refer to a specific element in this array, you need to specify 

two index numbers. 

. Again, if you are thinking of the array in terms of a 10 by 10 

matrix, the following example shows how you can assign a value 

to an element located in the third row and fourth column of the 

array: 

 

MyArray (3, 4) = 125 

 



 ١٨٣

Dynamic arrays: 

. It can be hard to know ahead of time exactly how many items you 

are going to put onto an array. 

. When you solve a continuous beam, for example, you don’t know 

how many spans you are going to use. It could be 2 or even 10. 

. So, a dynamic array is simply an array whose size is not 

predetermined. To use it, you specify a size, and then it acts just 

like any other array. 

 

Declaring Dynamic arrays: 

. A dynamic array is declared just like any other kind of array: with 

the Dim statement. 

. You declare it with a blank set of parentheses: 

 

Dim MyArray ( ) as Integer 

 

. Before you can use this array, you must use the ReDim statement 

to tell VBA how many elements the array has. 

. You can use the ReDim statement any number of times, changing 

the array’s size as often as you need. 

 

ReDim MyArray (1 to 10) 

 



 ١٨٤

Warning 

. When you redimension an array by using ReDim you delete the 

values stored in the array elements. 

. You can avoid this by using the Preserve keyword. 

 

ReDim Preserve MyArray (1 to 20) 

 

. If this array has 10 elements stored on it and you execute the 

preceding statement, the first 10 elements will remain unchanged, 

and the array will have room to store 10 more elements. 

 

Example: 

For a part of continuous beam analysis with any number of spans, 

create a Sub to read and store the length of each span 

 



 ١٨٥

 

 

After running this sub the program will ask about the number of 

spans, as shown in the following figure: 

 



 ١٨٦

After entering the number of spans and clicking OK button, five 

consecutive windows will appear to ask about the length of each 

span. The first window, out of five, is shown below: 

 

 

 

By entering the last span length the sub should put these values in 

the work sheet, as shown below, and also stores these value in the 

span_length array 

 

 

 

 


