CHAPTER NINE
VISUAL BASIC IN EXCEL (VBA)

What isVBA?

. VBA stands for Visual Basic for Application.

. VBA is the tool you use to develop macros (or programs) that
control Excel in many different ways.

An introduction to Visual Basic Programming in excel

1. Choose View = Toolbars submenu = activate Forms

and Visual Basic tool bars.

2. In the Visual Basic tool bar the icon to the the LEFT of the

“hammer and wrench”

1s the

Visual

Basic Editor.

=] Eg:lit|5giew Insert Format Tools Data \Window Help

: & | &/ E normal o Aa® (s £~ 5% e B i@
- Traner El page Braak Proviaw M T4 |§ = = E| [|@ T | £ EF | L v A
aio IT Standsd
A | v EormulaBar IT For matting E E | e
IT Statls Bar BIDN Formatting
g
Header and Footer. ..
Contral Toolbox Az abl
s Cornmants) —
Drawing “Aisunl Basic [—D] -l
CLISTOIT WISWE, . Exit Design Mode
3 » e 1| AARE | F @
Full Scraen External Data
£00M... » Forms ER
Picture (SENED
PivotT able F s
Reviewing Al (5]
IT Visual Basic
_l Yieh eI
. Wiorclart
Customize. ..

3. Click on this to enter the Visual Basic Environment.
4. Go to the Insert pull down menu

5. Choose = Module from the list of options

-~ Microsoft Yisuaol Basic - Boaok1
” Eil= Edit “iew | Insert Format Debuag Bon

”E 3 - E| J{ﬁh = [=

Sl R T e C2E UserForm

ji= a2
2E FuncRes =l * Class Module
= -@. YBAProjec
=15 Microsof .
. B Sheetl (Sheetl) |

|

odule

Eilien

6. This will arrive at a multi part window:

* On the left-hand side you will see two small windows. The top
left window gives an overview of all the elements in the visual
basic environment

» The bottom left window gives the properties of what ever is
highlighted in the top left window

Make sure Modulel is highlighted in the Project-VBA Project
sub-window.

* Go to the (Name) field in the bottom window and change the

name to something more appropriate i.e., TRAP

AR

4 Microsoft Yisual Basic - Bookl - [Modulel (Code)l
“% Eile Edit Wiew Insert Forrmat Debug Bun Tools Wwindow Help = Iﬂlil

[aeiE- B % ER#H o) 1 sl MRS 2 B \
: X I[General:l ﬂ I[Declaratinns:l j

2lE]

=& VBAProject (Book1) 4|
=5 Microsoft Excel Objec
. LB Shestl (Sheetl)
Sheet? (Sheet2)
Sheet3 (Sheet3)
. L8] Thisthiorkhoak
EI@ Madulas
¢ Modulel

4]

Prooerties - Modulel

|Mud|jel Iaduie ;I
Alphizbetic |Categ0rized |

REIEY] TR.AF

Programming:
STEP(1)

The first and second lines of your visual basic program should be

(1) The name of the program and (2) The End statement--- i.e.

Sub Trap()
End Sub

The first line says that you are going to write a subroutine called

“Trap”. The second line will be added automatically.

Yy

STEP (2). RUNNING THE PROGRAM

Although it will not do anything we can run our program
Method 1. Development Mode.
» Choose Run = Run Sub/User Form

“% File Edit “iew Insert Format Debug @ Tools Window Help
“K a- = | i = g4 | sl e | 3 F!.uﬂ SubMJserForm FS Ln

Im Il Break CirH-Bresk j

m Eeset
gub

Fraject - YBAPraject
=

=-## VBAProject (Book1) :I
=3 Microsoft Excel Objec

B Sheetl (Sheetl)

ﬁ Design Mode
End Sub

* This is a good option when you are testing the program

* I[F YOU MAKE AN ERROR IN the LOGIC, THE PROGRAM
will stop running and a dialog box will appear.

. SELECTING the debug option in this box will point out the line
that is wrong. You can then correct the line and reset the program.

* DO this by going to the run and selecting the r eset

Method 2. Normal Mode.

 Return to Excdl (in the Visual Basic Editor) click on the X icon
on the far left of the second menu bar.

TIP It 1s a good idea to rename the sheet that you will use to

communicate with the visual basic program. Data will be entered

Yy

in the cells in that sheet and read by the visual basic program. In
turn, after processing the program will return data assigned cells in
the spreadsheet.
To name control sheet

* select the sheet tab

* hit the right mouse button

* choose the rename option

 name the sheet.
STEP (3)
Next type some COMMENTS these are little memos to yourself.
To type a comment at the start of the line place a single quote (°).
Sub Trap ()
' This program was written in 2007

" [ts purpose is to evaluate an integral using the trapezoidal rule

End Sub

STEP (4). Communicating between a sheet and a program

» The key step in using visual basic in excel is the ability to pass
information from a sheet to the program and visa versa.

* We use an array called CELLS (Row, Column)

» For example: on a sheet CELLS (5,11) refers to the cell with
address DS.

¢

« If you look at a given sheet the value in cell DS is located in the

5" row and the 4" column.

X Microsoft Excel - Bookl

“E Eile Edit “iew Insert Format Tools Data Window Help

D SRY | FBRC 9 | |® = A 25

“.&rahicTransparem ~ 10 v| B 7 U | S IE |§ = = | [|§ 4
Bl - =

A B C D E F
1
2
3
4
3
GO
-

Example:

1. Read a value from spread sheet “control” cell Al

2. Store that value in the program under the label N

3. Output the value of N back to the sheet “control” and place it
in cell B10

Sub Trap()

' This program was written in 2007

' [ts purpose is to evaluate an integral using the trapezoidal rule

' Read in number of steps from sheet "Control"

N = Sheets("Control").Cells(1, 1)

' The first element on the right hand side tells the program to look

on the spreadsheet called "control"

' The second element on the right hand side tells the program to
look in cell A1

' The program stores this value under the label N

" Output number of steps back to Spread sheet control
Sheets("Control").Cells(10, 2) =N

" This makes the program put the current value stored under the
‘label N into the location B10 on the spreadsheet called control
End Sub

. This new code can be readily checked by clicking the “magic

Button” on the control page.

STEP (5) Variable types.

Understanding variables

. A variable is simply a named storage location in your computer
memory.

. Make the variable names as descriptive as possible

. You as sign a value to a variable using the equal sign operator

Examples:
X=1
X=X +1

Username = “Bob Johnson”

AR

General Rules:

* You can use letters, numbers and some characters, but the first
character must be a letter.

* You cannot use any Spaces or periodsin a variable name.

 VBA does not distinguish between uppercase and |lowercase
letters.

* You cannot use the following characters: #, $, %, &, or !

What arevariable types?

. Variable type refers to the manner in which a program stores data
in memory — for example, as integer, real numbers, or strings.

. VBA has a variety of built-in data types. The following table lists
the most common types of data that VBA can handle.

. Although VBA can take care of these details automatically, it
does so at a cost.

. Letting VBA handle your data results in slower execution and
inefficient use of memory especially with complex programs.

T1P when VBA is working with data, execution speed depends in
the number of bytes VBA must handle. The fewer bytes used by

the data, the faster VBA can access and manipulate data.

Vv

VBA Built-In Data Types

Data Type Bytes Used Range of Values
Integer 2 -32,768 t0 32,767
Long 4 -2,147,483,648 to
2,147.,483,647
Single 4 -3.402823E38 to
1.401298E45
Double (negative) 8 -1.797693134E308 to
—4.94065645E-324
Double (positive) 8 4.94065645E-324 to
1.797693134E308
String | per character Varies
Variant Varies Any data type

Declaring variables

If you don’t declare the data type for a variable, VBA assigns the
default data type, variant.
. Variant causes VBA to repeatedly perform time- consuming
checks and reserve more memory than necessary.

If VBA knows a variable’s data type, it doesn’t have to
investigate, and it can reserve just enough memory to store the

data.

To force yourself to declare all variables you use, include the
following at the first statement in your VBA module:

Option Explicit

VA

This statement causes the program to stop whenever VBA founds a
new variable that has not been declared. This is very useful if you
misspell a variable so VBA will declare it as a new variable.

.Inour Trap program we will need:

Two integer variable:

I (a counter) and N (the number of Strips);

Floating point (real) variablesfor:

. The*“X” values

. The function heights “Fleft” and “Fright”
. The Area.

. At the start of the program we write the lines:

'"Variable Declaration

Dim I As Integer ' a counter

Dim N As Integer ' the number of strips

Dim Area As Single ' Area under curve

Dim Xleft As Single ' value of x at left side of trap.
Dim Xright As Single 'value of x at right side of trap.
Dim Fleft As Single ' value of y at left side of trap.

Dim Fright As Single 'value of y at right side of trap.

Y14

Step (6). Loop

. Often in programming we need to Repeat operations many times.
.One way to do this is with — FOR LOQOP,
F — Next loops

Dim I As Integer

Dim N As Integer

For 1=-3To 1 Step 2
N=N+1

Next I

Next Line

.This loop sets I = -3:

Carries out the equation N=N+1, so N=1

. Increments I by 2 to the value —1:
Repeats the equation, so N=2 now.

. Increments I to the value 1:

Repeats the equation, so N=3 now.

GO TO NEXT LINE

We can also step backwards, 1.e.,

Tip
J [=4To 1 Step -1
N=N+1

Next 1

Another way to do this 1s with — DO LOOP,
Do- Loops
Do- While and Do-Until loop

Loop continues until a specified condition is met, e.g.,

N=0

Do while I <100
N=N+1

Loop

Or

N=0

Do Until I >=100
N=N+1

Loop

As long as I is less than 100, the loop will run.

STEP (7) Thelf — Then structure

. Often we may only want to follow some instructions under a

given condition. Consider:

VY

If — Then - Else:
If (I'>1) Then

Do thisif“T>1"
Do this also

Else
Do thisif“T < 1"
And this
End If
Example:
1n3ag HCIJLJL_.-I &LJII I_IJl_ll:l &IIIUU\W ucll_l p— Iulﬂ
oy o ow B ME WS @)1, ol
| I[Generall LI ITimes LI
| gub Times () —

timel = InputBox ("Enter Time of the day™)
If (timel < 12) Then
Cellsdl, 1y = timel

Cells(l, Z) = "Good Morning"
MsgBox ["Good Morning™)

Else
cells(l, 1) = timel
Cellsi(l, 2y = "Good Afterncoon’”
M=zgBox ("Good Afterncon™)

End It

End Zub

When the program runs, the figure below will appear asking for the

time of the day;

A\RA

L2 bl |2 LAY | b =B W | KD v Y - W W | 2 B B K4 | P 4D

ibic Transparent = 1III-|B I leﬂ ﬂ*l%%%‘@l@% 3 '.'63;0.3'
- -
A B C D E F
Microsoft Excel m
Enter Time of the dawy ol
Cancel

Once the time is entered and you click OK, the program will put
the value of “13” in cell “A1”, the text “Good Afternoon” in cell

“B1”, and then displays a message box as shown below.

D= S |l - s
J Arabic Transparen! = 10 - | | & § - I | L | |§ =
=% B C
1 13 Good Atternoon
2
3
q— Sood Aftermnoon
5 B
L
o
8
Note:

. We used the operator < (less than) and > (bigger than) before.

. Other operator that may be used in the if statements are:

YVYY

= (equal tO) and <> (nOt equal tO)

Using Elsel f:

. If the first condition in the if statement turns out to be false, you
might want to explore other alternatives.

. The Elself allows you to add as many alternatives as you like.

Sub Times()

timel = InputBox(""Enter Time of the day'")
If (timel < 12) Then

Cells(1, 1) = timel

Cells(1, 2) = "Good Morning"

MsgBox (""Good Morning'')

Elself (timel >= 12 and timel < 18) Then
Cells(1, 1) = timel
Cells(1, 2) = "Good Afternoon"
MsgBox (""Good Afternoon'')

Else
Cells(1, 1) = timel
Cells(1, 2) = "Good Afternoon"
MsgBox (""Good Evening'')

End If
End Sub

\e

VBA FUNCTIONSAND ARRAYS

Subroutines ver sus Functions

. The VBA code that you write in Visual Basic module is known as
a procedure.
. You can write two types of procedures:

A subroutine procedure: A group of VBA statements that

perform actions with Excel, i.e. like the one we used in trapezoidal
rule.

A function procedure: A group of VBA statements that perform a

calculation and return a single value.

Common Types of Functionsin Excd

Built-in Functions:

. Excel includes many worksheet functions that we often use.

. Examples include SUM, AVERAGE, MEAN, SIN, ... etc.

. Each function takes one or more arguments and returns a single

value.

VBA or User-defined Functions:
. Similar to what a build-in function can do but can do more.
. Simply, it is a piece of programming code that gives you a value

back whenever you use it.

L ooking at Functions
. Every function must start with the keyword Function and end

with an End Function statement.

Function Multiply (x, y)
Statements
Multiply =x *y

End Function

. This function, named “Multiply”, takes two arguments (named X
and y).

. Arguments are a list of variables representing values that are
passed to the function.

. Functions can have no argument, one argument, or multiple
arguments.

. Satements are various line of code, one of which will be of the
form “Multiply = expression” , i.e. Multiply = x*y.

. This is the same name as on the first line and the value of the
expression is assigned to it. This 1s becomes the return value of the
function

. When you run the function, it returns a single value that is the

value of ‘x’ multiplied by ‘Y.

Yv1

You can’t use the Excel macro recorder to record a function. You

must manually enter every function that you create.

Example:

Create a function that determines the area of equilateral triangle

with side length ‘L’ and base ‘B’.

Basic - Book? - [Module1 (Code)]

[nsert Format Debug Bun Tools window Help

=18

Bé# o)y ogoekl MWEFET B nis o
x

rs

{General) - Iarea vl
L " This function is written to find
10k2) :I‘ " the area of egilateral triangle
?/ Objer " date: 23/11/99
1eetl)
1eet?))
“eet3) Function area{L, B)
ook
fcalculation of triangle height
| h = 8qr{L *~ 2 - (B / 2) *~ 2]
hd area = 0.5 * B * h
JJ__ MsgPBox "Area of Triangle= " & area

x|
_;, l:ﬂnd Function

. When you run the function, it returns a value of the area and the

following window will display the value of the area.

Yy

Microsoft Excel E

Area of Trangle= 22 3872173348989

Executing Functions
. Functions can be executed in only two ways:
By calling the function from another subroutine or function.

By using the function directly in a worksheet formula.

Method 1: Calling the function from a subr outine

Because you can’t execute the function directly, you must call it

from another subroutine as shown in the following figure

I. When running the executer subroutine, two consecutive windows
will appear asking about L then B.
II. Once you gave the data needed, a message box will appear

showing the resulting area as shown in the previous example.

YVYA

mat Debug Bun Tools Wiindow Help _|E|i|
9 o b BEE | @ ns oot

I[Generalj ;I Iarea ;I

Sub executer()
L = InputBox ("Enter side length")
B = InputBox ("Enter haze length'™)
MsgBox "Area of Triangle= "™ & area({L, B}
End Sub

ﬁunction area (L, B)

"'calculation of triangle height
h = Sqri{l ~ 2 - (B / 2) *~ 2}
area = 0.5 * B * h

End Function

Method 2. Calling the function from a wor ksheet for mula

. Activate the worksheet in the same workbook that holds the
“area” function.

* Then, enter the following formula into any cell:

= area (5,6)

* The cell displays 12, which is the area of equilateral triangle of
side length = 5 and base length = 6.

* You can use a cell reference as the argument for the area function

as we can see below;

Yv4

|| T ENE EM MW pRE L CWEL LUk Ldld gy O

DESHEGRY iR v R &®

JJ Arabic Transparent = 10 - | B 7 U ‘ P A4 ‘% = =}
A3 | = =area(Al;A2)
A B C D
1 3
2 6
3 121
4
ARRAYS

. An array is a group of variables that have a common name.

. You refer to specific variable in the array by using the array hame
and an index number.

Array example:

. Assume that you want to store the months of the year in your
subroutine.

. You may define an array of 12 string variables to hold the months
of the year.

. If the array name is MonthNames, you can refer to the first
element of the array (i.e. January) as MonthNames (1), the second

element as MonthNames (2), and so on.

DeclaringArrays

. You declare an array with a Dim statement, just like you declare
regular variable.

. However, you also need to specify the number of elements in the
array.

. You do this by specifying the first index number, the keyword to,

and the last index number as shown in the following:

Dim MyArray (1 to 100) as Integer

. When you declare an array, you can specify only the upper index.
. VBA assumes that 0 is the lower index.

. Therefore, the following statements both declare the same array:

Dim MyArray (0 to 100) as Integer
Dim MyArray (100) as Integer

Note:
. If you want VBA to assume that 1 is the lower index for the
arrays include the following statement before any sub or Function
in your module

Option Base 1

. This statement forces VBA to use 1 as the first index number.

YA

. If this statement is present, the following statements are identical:

Dim MyArray (1 to 100) as Integer
Dim MyArray (100) as Integer

Declaring Multi-dimensional Arrays

. The arrays created above are all one-dimensional arrays.

. Arrays you create in VBA can have as many as 60 dimensions.

. The following example declares a 100-integer array with two

dimensions:

Dim MyArray (1 to 10, 1 to 10) as Integer

. You can think of this array as a 10 by 10 matrix.

. To refer to a specific element in this array, you need to specify
two index numbers.

. Again, if you are thinking of the array in terms of a 10 by 10
matrix, the following example shows how you can assign a value
to an element located in the third row and fourth column of the

array:

MyArray (3, 4) =125

YAY

Dynamic arrays.

. It can be hard to know ahead of time exactly how many items you
are going to put onto an array.

. When you solve a continuous beam, for example, you don’t know
how many spans you are going to use. It could be 2 or even 10.

. So, a dynamic array is simply an array whose size is not
predetermined. To use it, you specify a size, and then it acts just

like any other array.

Declaring Dynamic arrays:
. A dynamic array is declared just like any other kind of array: with
the Dim statement.

. You declare it with a blank set of parentheses:
Dim MyArray () as Integer
. Before you can use this array, you must use the ReDim statement
to tell VBA how many elements the array has.
. You can use the ReDim statement any number of times, changing

the array’s size as often as you need.

ReDim MyArray (1 to 10)

YAY

Warning
. When you redimension an array by using ReDim you delete the
values stored in the array elements.

. You can avoid this by using the Preserve keyword.

ReDim Preserve MyArray (1 to 20)

. If this array has 10 elements stored on it and you execute the
preceding statement, the first 10 elements will remain unchanged,

and the array will have room to store 10 more elements.
Example;

For a part of continuous beam analysis with any number of spans,

create a Sub to read and store the length of each span

YAE

g Microsoft Visual Basic - Book2 - [beam (Code)

‘% File Edit View Insert Format Debug Run Tools Window Help Jil_
®a-d \ﬁﬂﬂﬂ Gy wh MEW Y O sy

I(GeneraI) J IBeam ¥
B -

" This program was created to analyse continuous
" beans
" It was created on Nov. 2f 1099

vBAProject (Book?) &
] {25 Microsoft Excel Objects
o B Sheetl (Shestl)

Sheet2 (Sheet2)

Sheets (Shest3) dub bean ()
- L8] Thiswarkbook " Read number of spans
]ﬁHMumms num span = Inputhox {"Enter number of spanz”)
..... © 2 beam |

Declare array to store the length of each span
ﬂ —l Ll_ " in the beam

' Dim span_length ()
yeam Mocle v ReDim span length (1 To num =pan)

Loop to read sach span-length and store 1t in
span_length array
For 1 = 1 To num_span
span length (i) =
InputBox ["Enter the length of span no." & 1)

»‘-‘«Iphabetlt | Cateqorized | '

Cells{i, 1) = "span no." & 1
Cells{i, 2) = span length(i)
Nezt 1

zd | '

After running this sub the program will ask about the number of

spans, as shown in the following figure:

A I
5] Microsoft Excel B3 L
Enter number of spans 0K
Cancel
El

After entering the number of spans and clicking OK button, five
consecutive windows will appear to ask about the length of each

span. The first window, out of five, is shown below:

d |

] Microsoft Excel El
Enter the length of span no 1 Al
Cancel
El

By entering the last span length the sub should put these values in
the work sheet, as shown below, and also stores these value in the

span_length array

A B C D E F o "

span no.1 2
span no.2 4

SDAN 10.3 5 Enterthe length of span no b
span no .4 4

Cancel |

]

VAT

